Portfolio construction as linearly constrained separable optimization

نویسندگان

چکیده

Mean–variance portfolio optimization problems often involve separable nonconvex terms, including penalties on capital gains, integer share constraints, and minimum nonzero position trade sizes. We propose a heuristic algorithm for such based the alternating direction method of multipliers (ADMM). This allows solve times in tens to hundreds milliseconds with around 1000 securities 100 risk factors. also obtain bound achievable performance. Our are both derived from similar results other objective affine equality constraints. discuss concrete implementation case where terms piecewise quadratic, we empirically demonstrate its effectiveness tax-aware construction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization

The alternating direction method of multipliers (ADMM) is a popular and efficient first-order method that has recently found numerous applications, and the proximal ADMM is an important variant of it. The main contributions of this paper are the proposition and the analysis of a class of inertial proximal ADMMs, which unify the basic ideas of the inertial proximal point method and the proximal ...

متن کامل

A Robust Knapsack Based Constrained Portfolio Optimization

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...

متن کامل

Large-scale linearly constrained optimization

An algorithm for solving large-scale nonlinear' programs with linear constraints is presented. The method combines efficient sparse-matrix techniques as in the revised simplex method with stable quasi-Newton methods for handling the nonlinearities. A general-purpose production code (MINOS) is described, along with computational experience on a wide variety of problems.

متن کامل

Inexact Alternating-Direction-Based Contraction Methods for Separable Linearly Constrained Convex Optimization

Alternating direction method of multipliers has been well studied in the context of linearly constrained convex optimization. In the last few years, we have witnessed a number of novel applications arising from image processing, compressive sensing and statistics, etc., where the approach is surprisingly efficient. In the early applications, the objective function of the linearly constrained co...

متن کامل

Proximal alternating direction-based contraction methods for separable linearly constrained convex optimization

Alternating direction method (ADM) has been well studied in the context of linearly constrained convex programming problems. Recently, because of its significant efficiency and easy implementation in novel applications, ADM is extended to the case where the number of separable parts is a finite number. The algorithmic framework of the extended method consists of two phases. On each iteration it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization and Engineering

سال: 2022

ISSN: ['1389-4420', '1573-2924']

DOI: https://doi.org/10.1007/s11081-022-09748-x